The many, many dimensions of String Theories and the Multiverse constitute the extremes of fairytale physics brought about by the continuous cobbling-together of more and more fantastical, fictional forces, effects and invented particles in attempts to make sense of the puzzles inherent in the empirical evidence of experiments such as Young's double-slit phenomenon.

But even the photon, the point-particle of light, does not bear close examination. A while ago, I was having a discussion with an Open University student when I called the photon a massless particle. He looked at me with disdainful suspicion and asked how can a particle that carries energy, be massless?

It takes the undoctrinated to ask such glaringly obvious questions, when practicing physicists accept this kind of nonsensical description without question. Quantum physicists are too fond of suggesting that the quantum world with its "purely quantum effects" just cannot be related to the macro world in which we live.

The definition of the photon makes no sense - not to common sense. But it should!

This Blog offers a simple, common-sense description of the photon, and of every particle: from this, and directly from this, applying the same logical explanation, I am able to desribe all quantum effects and processes in four-dimensional spacetime, with no extra dimensions, no alternative universes - and far, far fewer particles.

The Higgs Boson

The Different Masses of Particles - The Questions

When physicists investigate the nature of the different particles existing in the standard model of quantum mechanics, they are puzzled – it seems strange that some particles have different masses than others. Why strange? They must have, you might say, because they're different sizes. But then the photon, the particle of light, is said to be massless. It must be, to travel at the speed of light, because it is light. Nothing with mass could travel that fast.

How does this come about? Well, one theory is the Higgs Field, from which you will have heard of the Higgs boson: the Higgs field, made up of Higgs bosons, is everywhere, according to this theory, through which some particles can pass without any interaction, without being slowed down in other words, so that they are massless, able to travel at the speed of light, like photons; and some are made slower by interaction, hence made heavier, given mass, like electrons. Without the hidden Higgs field, in effect, everything would travel at the speed of light and nothing would have any mass at all.

What has happened is that the standard model has hit a problem, something that it cannot explain or describe, so invents a whole new field full of particles to fit a theory “tagged on” to the standard model. This has happened time and again, with new bits being added on to try to make the standard model work. A new theoretic attachment almost always requires a whole new set of particles and so, certainly in the case of the Higgs boson, the people at CERN* start searching.

And, in this case, finding … haven't they?

*(At CERN, the European Organization for Nuclear Research, physicists and engineers are using the world's largest and most complex scientific instruments to study the basic constituents of matter - the fundamental particles. The particles are made to collide together at close to the speed of light. The process gives the physicists clues about how the particles interact, which supposedly provides insights into the fundamental laws of nature.)

The Different Masses of Particles -  The Solutions

Who Ordered That? – a plethora of false particles!

By the mid-1930s, physicists believed they had identified all the subatomic particles of nature – the proton, neutron, and electron of the atom. But in 1936 the muon (see Appendix Two) was discovered – a new particle with such surprising properties that Nobel laureate I.I. Rabi quipped, "who ordered that?" when he was informed of the discovery. 

From then on, many new “particles” have been discovered, many more suggested and looked for – like the graviton, for example: ubiquitous, yet undetectable. And others, like the Higgs Boson, which supposedly gives some particles mass and not others - as with electrons, which have mass, and photons, which do not. Let us concentrate, then, on those two sub-atomic particles, the electron and the photon.

*          *          *

When as electron moves from one energy level (shell) within an atom to a lower level, a photon is released. The photon is massless and is travelling at the speed of light. And yet, when another atom responds to the photon, mass (energy) is transferred. So how could the photon be massless? And if it isn't, how could it travel at the speed of light, when something carrying mass from one place to another cannot travel at the speed of light?

And then the electron has mass, so travels at a speed some way below the speed of light. What are they, these sub-atomic particles?

Well we have already ascertained that they are effects of the changes in matter particles, in protons and neutrons. Let's take the photon first:

The atom decreases its energy, climbing down from one level to another, and there it sits at the lower level. The effect is everywhere around it, as it has no actual boundary unless gauged from another atom. So everywhere around the altered atom is instantly and simultaneously altered – in other words, at the speed of light.

Now look at the electron. The atom is suddenly excited, one may say over-excited, it will then “shuffle off” the extra energy. The effect on its surroundings is a “peak” of energy effect travelling outwards in all directions. The energy wave propagates in all directions at once, travelling at a specific speed (less than the speed of light), carrying energy outwards. But this effect must never be mistaken for a particle, in any way distinct from its parent atom. Until it reacts with another atom, the travelling wave is an integral part of the parent atom, which has no boundary. The wave effect is still centred on the black-hole nucleus of the atom, its energy still an integral part of the energy system of that atom: a condition which remains until it reacts with that other atom.

So, the photon and the electron can be viewed as the surrounding effect of the atom having changed size, in the case of the photon, and having changed shape, in the case of the electron.

Then, from the above descriptions, the photon and the electron can therefore be looked upon as a standing wave and a travelling wave, respectively:

Standing Waves

Consider the string set-up as depicted above. There you can see different wavelengths, relating to the level of excitation, but the effect is all the way along the string, all the time. This is the same effect as a photon. By varying the frequency so that the pulses are produced at certain intervals, there can be produced fixed points of destructive interference (nodes) and fixed points of constructive interference (antinodes).

Travelling Waves

Travelling waves, on the other hand, move from place to place, transporting energy, in the same way as the electron does. Travelling waves can have any frequency, just like standing waves. The travelling wave is like a seaside wave that can knock you off your feet with its shifting energy.

It must be realised that standing waves or travelling waves can move in one, two or three dimensions.

*          *          *

But neither the photon nor the electron can exist without their relationship to the originating atom and then their effect on another atom. Until the receiving atom reacts to the photon or the electron, the photon or electron is still part of the energy system of the mother atom.

Do photons and electrons exist as independent particles? No. They are part of the source-atom until they transfer to the receiver-atom as effects. (Although there have been electrons supposedly isolated and kept for weeks by physicists, with measurements made of their attributes – for the discussion of this, see Appendix Six.)

If photons and electrons have no independent existence, then what about all the other sub-atomic particles?

Well, we can see how the photon as a standing wave is instantaneously everywhere, i.e. it has no mass, when the electron is a travelling wave of energy propagating outwards from the mother atom – therefore, we require no Higgs Field to attribute some particles their mass. Protons and neutrons have mass simply because they are sheer energy. But there is no Higgs boson.

So, what have the physicists and engineers at CERN been discovering, with their new particle that seems to suggest the Higgs boson?

Let's just step back and look again at what we've done with photons and electrons. They are reactions to changes, causes and effects of changes of energy levels within protons and neutrons. So, if we smash particles one into the other, we will see effects. And as we continue increasing the energy of the accelerations leading up to the collisions, we will see more and more energetic effects.

But do engineers at CERN measure the accelerated particles themselves? No. They must use measuring instruments. In other words, they are measuring the effects of these dramatic collisions indirectly, by their effects on unaccelerated particles.

The disturbances in the fields surrounding atoms will always have effects on other atoms. That is what we're seeing. Most of the detected “sub-atomic particles” have a tiny, almost immeasurable lifespan – in other words they are the ephemeral effects in the overall construction of the fields between atoms, the very structures of the protons and neutrons. Even the quarks are glimpsed disturbances that disappear as the atoms regain their equilibrium state. The different detected quarks are simply the different possible effects of such collisions on the equilibrium state of the matter in the measuring instruments.

All the effects are measured by instruments that are collecting the temporary disturbances. These disturbances appear to be particles, in the same way as photons and electrons appear to be particles. Feynman diagrams (see Appendix Five) are a clever way of mapping possible field disturbances and interactions by identifying combinations of effects – but all these effects are only ever realised by the reactions of equilibrium-state protons and neutrons.

And, during nuclear fusion, when two protons are fused with another two protons they will form an alpha or helium particle. Two of the protons have effectively turned into neutrons. Release a neutron and it will turn back into a proton. The neutron is, therefore, an absorbed proton.

So, what else is there?

Nothing. Protons.

Only protons.


Have a look at this report from the International Business Times on how much it has cost to chase the illusive "Higgs Boson":

Forbes: Finding The Higgs Boson Cost $13.25 Billion

CERN scientists announced Wednesday that they may have finally discovered glimpses of the elusive Higgs boson, called the God particle for its profound importance to our current model of physics.

It's an important discovery that could reshape scientists' understanding of the universe forever. But the question remains: How much did it cost?

According to Forbes, finding the Higgs boson ran about $13.25 billion.

The discovery came thanks to the work of the Large Hadron Collider, the world's largest particle accelerator, buried under the Swiss-French border. The facility took 10 years and around $4.75 billion to construct. Since it was declared operational in 2008, the LHC's operating costs have been about $1 billion each year.

What could possibly be driving the yearly costs up that high? The LHC requires a staff of more than 10,000 researchers, engineers, and students to stay afloat. Electricity costs alone for the LHC run about $23.4 million annually, while each year's computing costs have been estimated at $286 million each year. The collider is a delicate machine that requires constant upkeep.

Finally, experiments at the LHC also drive up costs. While the quest for the Higgs boson isn't the Hadron Collider's only intended purpose, most of the experiments carried out so far have been focused on finding the particle. These experiments have run an additional $5 billion in funding, bringing the total to the aforementioned $13.25 billion.

That seems like a ton of money. It's significantly more than the vast majority of people will earn over their entire lifetimes. But it's important to remember than the LHC's budget isn't composed of one person's checking account.

The LHC is a government project jointly funded by CERN member countries, with additional money for experiments coming from CERN and private research organizations. About half of the CERNS's funding comes from Germany, France, and the U.K., while CERN's other 17 member countries contribute the other half of the budget.

To put the costs in perspective, the total cost of finding the Higgs boson has been less than one year of NASA's budget (an estimated $17.711 billion for 2013). The 14-year project cost less than 2.2 percent of the United States' estimated military budget for 2013.

For a joint project of 20 countries and several research institutions, $13.25 billion over 14 years is a small price to pay for the secrets of the universe.

Now, did you know - and most people don't - that no one has ever seen or even detected this "particle"? The particle accelerator at CERN smashes matter particles into each other and then tries to find things written in the chaotic after-effects. The Higgs boson was supposedly "discovered" in this way; but what does this mean? This particle, the one that's supposed to give mass to you and me, lasts for the tiniest, tiniest unmeasurable fragment of a second - less than a sextillionth of a second, or less than 1000 million-million-millionths of a second - a time lapse too tiny to be detected. No, the scientists at CERN have to look for what this "particle" has left behind in amongst the chaos of ultra-high energy collisions. Scientists trained to look for these things, look for these things.

But what's really happening? No independent experimenter can reproduce these experiments, as there is no other piece of equipment in the world capable of creating such energetic chaos. And specialists look, and specialists will eventually find.

The Higgs boson fits into the Standard Model, so the standard modellers set about trying to find the traces of such a thing. Which they do.

But the Higgs is just another invented, unnecessary particle in amongst the "zoo" of unnecessary non-existent particles.

The whole of my Blog has been created to explain how some things, protons, neutrons and electrons have mass, while others, like photons, do not - without having to invent more "particles" to fudge and confuse the simplest of descriptions of natural reality.

No comments:

Post a Comment